一:f(a)=sin2(π-a)cos(2π-a)tan(-π+a)/sin(-π+a)tan(-a+3π)
=2sin(π-a)cos(π-a)cosa (-tan(π-a))/-sin(π-a)tan(π-a)
=2cos(π-a)cosa
=-2sina cosa
=1-2sina cosa -1
=(sina-cosa)²-1
二:f(a)=1/8
所以(sina-cosa)²=9/8
因为π/4<a<π/2
在此区域内 sina-cosa≥0
所以sina-cosa=3/4*根号2
三:f(a)=(sina-cosa)²-1
=(sin(-31π/3)-cos(-31π/3))-1
=(cos(31π/3)-sin(31π/3))-1
=(cos(10π+π/3)-sin(10π+π/3)-1
=cosπ/3-sinπ/3-1
=1/2-1/3-1
=-5/6