已知a,b,c为△ABC的三条边的长,
(1)当b^2+2ab=c^2+2ac时,试判断△ABC的形状;
(2)求证:a^2-b^2+c^2-2ac<0
【解】(1)因为b^2+2ab=c^2+2ac
所以b^2+2ab+a^2=c^2+2ac+a^2
(b+a)^2=(c+a)^2
因为b+a>0,c+a>0
所以b+a=c+a,b=c
所以△ABC是等腰三角形
(2)因为△ABC中
|a-c|
已知a,b,c为△ABC的三条边的长,
(1)当b^2+2ab=c^2+2ac时,试判断△ABC的形状;
(2)求证:a^2-b^2+c^2-2ac<0
【解】(1)因为b^2+2ab=c^2+2ac
所以b^2+2ab+a^2=c^2+2ac+a^2
(b+a)^2=(c+a)^2
因为b+a>0,c+a>0
所以b+a=c+a,b=c
所以△ABC是等腰三角形
(2)因为△ABC中
|a-c|