解题思路:根据一元二次方程ax2+bx+c=0(a≠0)的根的判别式和定义得到m-2≠0且△=0,即16m2-4×(m-2)×(2m-6)=0,m2+5m-6=0,解得m1=-6,m2=1,即可得到m的值.
∵一元二次方程(m-2)x2-4mx+2m-6=0有两个相等的实数根,
∴m-2≠0且△=0,即16m2-4×(m-2)×(2m-6)=0,m2+5m-6=0,
解得m1=-6,m2=1.
∴m的值为-6或1.
故选C.
点评:
本题考点: 根的判别式.
考点点评: 本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.