由分母则x-1≠0
所以两边除以x-1
x-1=2
x=3
错了,是-(x+1)
原式=[x+x²-(x+1)²]/(x-1)*(x²-2x+1)/(x³+x²)
=(-x-1)/(x-1)*(x-1)²/x²(x+1)
=-(x+1)/(x-1)*(x-1)²/x²(x+1)
=-(x-1)/x²
=-(3-1)/3²
=-2/9
由分母则x-1≠0
所以两边除以x-1
x-1=2
x=3
错了,是-(x+1)
原式=[x+x²-(x+1)²]/(x-1)*(x²-2x+1)/(x³+x²)
=(-x-1)/(x-1)*(x-1)²/x²(x+1)
=-(x+1)/(x-1)*(x-1)²/x²(x+1)
=-(x-1)/x²
=-(3-1)/3²
=-2/9