xsin2xdx
=1/2∫x(-cos2x)′dx
=1/2(-xcos2x+∫(x)′cos2xdx)
=-x/2cos2x+1/4sin2x+c
1)∫kdx=kx+c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4) ∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(a^2-x^2)dx=arcsin(x/a)+c
11)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c
12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c
13)∫secxdx=ln|secx+tanx|+c
14) ∫sec^2 x dx=tanx+c;
15) ∫shx dx=chx+c;
16) ∫chx dx=shx+c;
17) ∫thx dx=ln(chx)+c;
18)∫k dx=kx+c
19) ∫1/(1+x^2) dx=arctanx+c
20) ∫1/√(1-x^2) dx=arcsinx+c
21) ∫tanx dx=-In|cosx|+c
22) ∫cotx dx=In|sinx|+c
23) ∫secx dx=In|secx+tanx|+c
24) ∫cscx dx=In|cscx-cotx|+c
25) ∫1/√(x^2+a^2) dx=In(x+√(x^2+a^2))+c
26) ∫1/√(x^2-a^2) dx=|In(x+√(x^2-a^2))|+c