(1)∠B=∠C=45°
∠DAC=∠DAE+∠EAC = 45°+∠EAC
∠AEB=∠C+∠EAC = 45°+∠EAC
∴∠AEB= ∠DAC
∴△ABE∽△DCA.
(2)∵△ABE∽△DCA,BE=m,CD=n
∴BE:CA=AB:DC
∵BC=2
∴mn=CA*AB=CA²=BC²/2=2
m、n的关系式为 mn=2
当E、C重合时,n最小,此时D是BC中点,n = 1
当B、D重合时,n最大,此时E是BC中点,n = 2
n的取值范围是(1,2)
(3)BE=CD ,即 m=n ∴m=n=√2
BD=BC-CD=2-√2
CE=BC-BE=2-√2
DE=BC-BD-CE=2-(2-√2)-(2-√2)=2√2-2
验证得出BD²+CE²=DE²
(4)BD²+CE²=DE²始终成立.
已知:BE=m,CD=n,BC = 2
说明:DE=BE-BD = BE-(BC-CD) = BE-BC+CD
DE²=BE²+CD²+BC²+2BE*CD-2BE*BC-2CD*BC
=m²+n²+4+2mn-4m-4n
=m²+n²+8-4m-4n
=(2-n)²+(2-m)²
又∵BD=BC-CD = 2-n
CE=BC-BE = 2-m
∴ DE²=BD²+CE²