已知数列{an}和{bn}满足:a1=1,a2=2,an>0,bn=根号anan+1,且{bn}是以q为公比的等比数列.

2个回答

  • 1=√a1a2=√2

    b2=b1q=√a2a3,a3=b1^2q^2/a2=q^2

    bn=b1q^(n-1)=√anan+1

    bn+2=b1q^(n+1)=√an+1an+2

    anan+1=2q^(n-1)

    an+2an+1=2q^(n+1)

    an/an+2=1/q^2

    an+2=an *q^2

    1、得证

    2、cn=a(2n-1)+2a(2n)

    a(2n+2)=q^2a(2n)

    a(2n+1)=a(2n-1+2)=q^2a(2n-1)

    cn+1/cn

    =[a(2n-1+2)+2a(2n+2)]/[a(2n-1)+2a(2n)]

    =q^2*[a(2n-1)+2a(2n)]/[a(2n-1)+2a(2n)]

    =q^2

    ∴ {cn}是等比数列,公比q^2

    3、

    an+2=anq^2

    1/a(2n)=1/a(2n-2+2)=1/q^2a(2n-2)=1/q^4a(2n-4)=1/q^6a(2n-6)

    =1/[q^2(n-1)a(2n-2n+2]

    同理,1/a(2n-1)=1/q^2a(2n-3)=1/q^2(n-1)a1

    S=1/a1+1/a2+...+1/a(2n-1)+1/a(2n)

    是两个等比数列之和,公比都是q^2,第一项分别是b1=1/a1=1,c1=1/a2=1/2

    都是n项

    据求和公式:

    S=(1-q^2n)/(1-q^2)+(1/2)(1-q^2n)/(1-q^2)

    =(3/2)(1-q^n)(1+q^n)/(1-q)(1+q)

    q≠±1

    q^2=1

    则,a3=a1=a5=...=a(2n-1)=1

    a2=a4=a6=...=a(2n)=1/2

    S=n/2+n=3n/2