设g(x)=x*f(x),g'(x)=x*f'(x)+f(x),g(0)=g(1)=0,根据微分中值定理,(0,1)内存在一点n,
使g'(n)=[g(1)-g(0)]/(1-0)=0,即n*f'(n)+f(n)=0,移项得f'(n)=-f(n)/n
设g(x)=x*f(x),g'(x)=x*f'(x)+f(x),g(0)=g(1)=0,根据微分中值定理,(0,1)内存在一点n,
使g'(n)=[g(1)-g(0)]/(1-0)=0,即n*f'(n)+f(n)=0,移项得f'(n)=-f(n)/n