sin²20°+cos²50°+sin20°cos50°
=(1-cos40°)/2+(1+cos100°)/2+(1/2)*(sin70°-sin30°)
=(1-cos40°)/2+(1-cos80°)/2+(1/2)*(cos20°-1/2)
=1-(1/2)*(cos40°+cos80°)+(1/2)*(cos20°-1/2)
=1-(cos60°cos20°)+(1/2)cos20°-1/4
=1-(1/2)cos20°+(1/2)cos20°-1/4
=3/4
sin²20°+cos²50°+sin20°cos50°
=(1-cos40°)/2+(1+cos100°)/2+(1/2)*(sin70°-sin30°)
=(1-cos40°)/2+(1-cos80°)/2+(1/2)*(cos20°-1/2)
=1-(1/2)*(cos40°+cos80°)+(1/2)*(cos20°-1/2)
=1-(cos60°cos20°)+(1/2)cos20°-1/4
=1-(1/2)cos20°+(1/2)cos20°-1/4
=3/4