利用复合函数的单调性
t=ax²+2x+a,
y=loga(t)
∴t=ax²+2x+a 对称轴为t=-1/a,
又a>0且a≠1
(1)a>1时,y=loga(t)在定义域内是增函数,
∵函数F(X)=㏒a(ax^2+2x+a) 在区间【-4,-2】上递增
利用同增异减的法则,
t(x)=ax²+2x+a在【-4,-2】上是增函数,且t(x)≥t(-4)=3a-4>0
∴ -1/a≤-4且t(-4)=17a-8>0
∴ 08/17
∴ 8/171
∴ 无解
(2)00
∴ 04/5
又 0
利用复合函数的单调性
t=ax²+2x+a,
y=loga(t)
∴t=ax²+2x+a 对称轴为t=-1/a,
又a>0且a≠1
(1)a>1时,y=loga(t)在定义域内是增函数,
∵函数F(X)=㏒a(ax^2+2x+a) 在区间【-4,-2】上递增
利用同增异减的法则,
t(x)=ax²+2x+a在【-4,-2】上是增函数,且t(x)≥t(-4)=3a-4>0
∴ -1/a≤-4且t(-4)=17a-8>0
∴ 08/17
∴ 8/171
∴ 无解
(2)00
∴ 04/5
又 0