解题思路:(1)作OP⊥AM,OQ⊥AN于Q,连接AO,BO,DO.证△APO≌△AQO,由BC=CD,得CP=EQ后得证;
(2)同AC=AE得∠ECM=∠CEN,由CE=EF得∠FCE=∠FEC=[1/2]∠MCE=[1/2]∠CEN得证.
证明:(1)作OP⊥AM于P,OQ⊥AN于Q,连接AO,BO,DO.
∵
BC=
DE,
∴BC=DE,
∴BP=DQ,
又∵OB=OD,
∴△OBP≌△ODQ,
∴OP=OQ.
∴BP=DQ=CP=EQ.
直角三角形APO和AQO中,
AO=AO,OP=OQ,
∴△APO≌△AQO.
∴AP=AQ.
∵CP=EQ,
∴AC=AE.
(2)∵AC=AE,
∴∠ACE=∠AEC.
∴∠ECM=∠CEN.
由于AF是CE的垂直平分线,
∴CF=EF.
∴∠FCE=∠FEC=[1/2]∠MCE=[1/2]∠CEN.
因此EF平分∠CEN.
点评:
本题考点: 圆心角、弧、弦的关系;全等三角形的判定与性质;线段垂直平分线的性质;等腰三角形的性质.
考点点评: 本题主要考查圆、等腰三角形、线段的垂直平分线、角平分线、尺规作图等基础知识,考查几何推理能力和空间观念.