第1题
an-a(n-1)=2n-3
a(n-1)-a(n-2)=2n-5
……
a2-a1=1
以上式子累加:
an-a1=(n-1)^2 我对右边使用了等差数列求和公式.
把a1=0代入可得:an=(n-1)^2
第2题
你确定这个表达式没问题?2an/an不是等于2吗?
第3题
设a(n+1)+k=3(an+k)
将上面的式子变形可得:a(n+1)=3an+2k
将它与a(n+1)=3an-2一比较可知k=-1
于是a(n+1)-1=3(an-1)
[a(n+1)-1]/(an-1)=3
这是一个等比数列,其首项a1-1=2
因此通项公式为an-1=2*3^(n-1)
an=2*3^(n-1)+1