圆锥曲线过定点问题,例:设点A和B是抛物线y^2=4px(p>0) 上原点以外的两个动点,且oa垂直,求证直线 过定点.

1个回答

  • 这个取的是特殊值,因为A、B虽然为两个动点,但有限定条件OA垂直于OB,所以两条直线的斜率之积为—1,又因为他取的是特殊值,所以就取了这样的两组斜率,同样你也可以取0.5和-2等等 取完之后OA、OB与抛物线方程联立,进而求出A、B两点的坐标,然后写出直线AB的方程 然后求出两组直线方程的交点,最后再设个一般的斜率K和—1/K,同理写出直线AB的方程,发现上述交点在直线AB上,即证明了上述命题