Sn=3/2(an-1),所以S(n-1)=3/2(a(n-1)-1),
a[n]=S[n]-S[n-1]=3/2(a[n]-a[n-1]),得a[n]=3a[n-1]
∴a[n]是等比数列,公比是3,又a1=S1=3/2(a1-1),解得a1=3
∴a[n]=3*3^(n-1)=3^n.
Sn=3/2(an-1),所以S(n-1)=3/2(a(n-1)-1),
a[n]=S[n]-S[n-1]=3/2(a[n]-a[n-1]),得a[n]=3a[n-1]
∴a[n]是等比数列,公比是3,又a1=S1=3/2(a1-1),解得a1=3
∴a[n]=3*3^(n-1)=3^n.