求lim(n^p+n^q)^1/n
1个回答
lim(n->∞) (n^p+n^q)^(1/n)
=e^lim ln(n^p+n^q)/n
=e^lim 1/[pn^(p-1)+qn^(q-1)],洛必达法则
=e^(1/∞)
=e^0
=1
相关问题
求证lim[(1^p+2^p+……+n^p)/n^p — n/(p+1)]=1/2,n→∞,p为自然数
求1.lim(3n-(3n^2+2n)/(n-1)) 2.lim(8+1/(n+1)) 3.lim根号n(根号(n+1)
lim n趋于无穷 ,an+1/an=q.求lim an=?
以知lim(n→∞)np^(1/n)-n=lnp,求lim(n→∞){[a^(1/n)+b^(1/n+c^(1/n)]/
求极限lim(n->∞){n*[n^(1/n)-1]}/ln(n)
lim n→无穷 (n+1/n-1)^n求极限
lim n趋于无穷 (n+1)(n+2)(n+3)/5n^3+n 这个怎么做啊, 求详细过程 3Q
求极限lim [1/(n+1)+1/(n+2)+...+1/(n+n)] (n→∞)
lim p[1+2*(1-p)+3*(1-p)^2+……+n*(1-p)^(n-1)]
lim n→∞[1/(n+1)+1/(n+2)+…+1/(n+n)]=?求极值!