解题思路:(1)把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,根据菱形和旋转的性质得到AE=AE′,∠EAF=∠E′AF,利用“SAS”证明△AEF≌△AE′F,得到EF=E′F;由于∠ADE′+∠ADC=120°,则点F、D、E′不共线,所以DE′+DF>EF,即由BE+DF>EF;
(2)把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),根据旋转的性质得到AE′=AE,∠EAF=∠E′AF,然后利用“SAS”证明△AEF≌△AE′F,得到EF=E′F,由于∠ADE′+∠ADC=180°,知F、D、E′共线,因此有EF=DE′+DF=BE+DF;根据前面的条件和结论可归纳出结论.
(1)当∠BAD=120°,∠EAF=60°时,EF=BE+DF不成立,EF<BE+DF.
理由如下:∵在菱形ABCD中,∠BAD=120°,∠EAF=60°,
∴AB=AD,∠1+∠2=60°,∠B=∠ADC=60°,
∴把△ABE绕点A逆时针旋转120°至△ADE′,如图(2),连结E′F,
∴∠EAE′=120°,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60°,
∴∠2+∠3=60°,
∴∠EAF=∠E′AF,
在△AEF和△AE′F中
AE=AE′
∠EAF=∠E′AF
AF=AF,
∴△AEF≌△AE′F(SAS),
∴EF=E′F,
∵∠ADE′+∠ADC=120°,即点F、D、E′不共线,
∴DE′+DF>EF
∴BE+DF>EF;
(2)当AB=AD,∠B+∠D=180°,∠EAF=[1/2]∠BAD时,EF=BE+DF成立.
理由如下:如图(3),
∵AB=AD,
∴把△ABE绕点A逆时针旋转∠BAD的度数至△ADE′,如图(3),
∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,
∵∠B+∠D=180°,
∴∠ADE′+∠D=180°,
∴点F、D、E′共线,
∵∠EAF=[1/2]∠BAD,
∴∠1+∠2=[1/2]∠BAD,
∴∠2+∠3=[1/2]∠BAD,
∴∠EAF=∠E′AF,
在△AEF和△AE′F中
AE=AE′
∠EAF=∠E′AF
AF=AF,
∴△AEF≌△AE′F(SAS),
∴EF=E′F,
∴EF=DE′+DF=BE+DF;
归纳:在四边形ABCD中,点E、F分别在BC、CD上,当AB=AD,∠B+∠D=180°,∠EAF=[1/2]∠BAD时,EF=BE+DF.
点评:
本题考点: 四边形综合题.
考点点评: 本题考查了四边形的综合题:熟练掌握特殊平行四边形的性质和旋转的性质;会运用三角形全等的判定与性质解决线段相等的问题.