方程arcsin(sinx)+arccos(cosx)=π/2的解集是————

2个回答

  • y1=arcsin(sinx)的定义域为R.值域为[-π/2,π/2]

    y2=arccos(cosx)的定义域为R.值域为[0,π]

    (a)当x∈[2kπ,2kπ+π/2](第一象限)时,y1=x-2kπ,y2=x-2kπ

    y1+y2=π/2

    2x-4kπ=π/2

    x=2kπ+π/4 .(1)

    (b)当x∈[2kπ+π/2,2kπ+π](第二象限)时,

    y1=π-(x-2kπ),y2=x-2kπ

    ∴y1+y2=π/2

    π-(x-2kπ)+x-2kπ=π/2

    无解

    (c)当x∈[2kπ+π,2kπ+3π/2](第三象限)时,

    y1=-[x-(2k+1)π],y2=x-(2k+1)π

    ∴y1+y2=π/2

    -[x-(2k+1)π]+x-(2k+1)π=π/2

    无解

    当x∈[2kπ+3π/2,2kπ+2π](第四象限)时,

    y1=x-(2k+2)π,y2=x-(2k+1)π

    ∴y1+y2=π/2

    x-(2k+2)π+x-(2k+1)π=π/2

    2x-(4k+3)π=π/2

    x=2kπ+7π/4 .(2)

    综合(1),(2)可知,

    原方程的解集为

    {x|x=x=2kπ+π/4或x=2kπ+7π/4 (k为整数)}