①连结AC,
∵AB=BC=CD=4,∠B=60°,BE+DF=4
∴△ABC是正三角形,BE=CF,∠ACF=60°=∠B,
∴AB=AC,
∴△ABE≌△ACF
∴AF=AE,∠BAE=∠CAF
∴∠BAE+∠EAC=∠EAC+∠CAF,
即∠EAF=∠BAC=60°,
∴△AEF是正三角形;
②做FG⊥BC,交BC延长线于G,
则FG=(根号3)X/2,EC=4-X,
S△CFE=(根号3)X/2*(4-X)/2=根号3*X(4-X)/4
S△AEF=S菱形-S△ABE-S△AFD-S△CEF
=S菱形-S△ACD-S△CEF (∵△ABE≌△ACF)
=S△ABC-S△CEF
=(根号3) X²/4-(根号3)X+4根号3