a-c*cosB)sinB=(b-c*cosA)sinA
由正玄定理:a/sinA=b/sinB 原等式化简:
(a-c*cosB)b=(b-c*cosA)a
ab-bc*cosB=ab-ac*cosA
b*cosB=a*cosA ====>sinBcosB=sinAcosA
sin2A=sin2B
A=B 或A+B=90°
为等腰三角形或直角三角形
a-c*cosB)sinB=(b-c*cosA)sinA
由正玄定理:a/sinA=b/sinB 原等式化简:
(a-c*cosB)b=(b-c*cosA)a
ab-bc*cosB=ab-ac*cosA
b*cosB=a*cosA ====>sinBcosB=sinAcosA
sin2A=sin2B
A=B 或A+B=90°
为等腰三角形或直角三角形