1) An-1=2-2/An-1=2(A(n-1)-1)/A(n-1)
An-2=1-2/An-1=(A(n-1)-2)/A(n-1)
两式相除得
(An-1)/(An-2)=2(A(n-1)-1)/(A(n-1)-2)
设Bn=(An-1)/(An-2)
Bn成等比 B1=(3-1)/(3-2)=2
Bn=2*2^(n-1)=2^n
(An-1)/(An-2)=2^n
An=(2^(n+1)+1)/(2^n-1)
2)两边除以AnAn+1得
1=1/An+1-1/An
bn=1/An
bn成等差
b1=2
bn=2+(n-1)=n+1
An=1/(n+1)
3)An+1+1=2(An+1)
bn=An+1
bn成等比
b1=2
bn=2^n
An=2^n-1