连结AC、BD.
∵ PQ为△ABC的中位线,
∴ PQ =1/2AC.
同理 MN=1/2AC.
∴ MN=PQ,MN//PQ
∴ 四边形PQMN为平行四边形.
在△AEC和△DEB中,
AE=DE,EC=EB,∠AED=60°=∠CEB,
即 ∠AEC=∠DEB.
∴ △AEC≌△DEB.
∴ AC=BD.
∴ PQ=1/2AC=1/2BD=PN.
∴ 四边形PQMN为菱形.
连结AC、BD.
∵ PQ为△ABC的中位线,
∴ PQ =1/2AC.
同理 MN=1/2AC.
∴ MN=PQ,MN//PQ
∴ 四边形PQMN为平行四边形.
在△AEC和△DEB中,
AE=DE,EC=EB,∠AED=60°=∠CEB,
即 ∠AEC=∠DEB.
∴ △AEC≌△DEB.
∴ AC=BD.
∴ PQ=1/2AC=1/2BD=PN.
∴ 四边形PQMN为菱形.