已知数列{a n }的前n项和为S n ,且S n =2a n -2(n∈N * ),在数列{b n }中,b 1 =1

1个回答

  • (1)由S n=2a n-2得:S n-1=2a n-1-2(n≥2),

    两式相减得:a n=2a n-2a n-1,即

    a n

    a n-1 =2(n≥2),

    又a 1=2a 1-2,

    ∴a 1=2,

    ∴数列{a n}是以2为首项,2为公比的等比数列,

    ∴a n=2 n

    ∵点P(b n,b n+1)在直线x-y+2=0上,

    ∴b n+1-b n=2,

    ∴数列{b n}是等差数列,

    ∵b 1=1,

    ∴b n=2n-1;

    (2)T n=1×2+3×2 2+5×2 3+…+(2n-3)×2 n-1+(2n-1)×2 n

    ∴2T n=1×2 2+3×2 3+…+(2n-3)×2 n+(2n-1)×2 n+1

    ①-②得:-T n=1×2+2(2 2+2 3+…+2 n)-(2n-1)×2 n+1

    =2+2×

    4(1- 2 n-1 )

    1-2 -(2n-1)×2 n+1

    =2+2×2 n+1-8-(2n-1)×2 n+1

    =(3-2n)2 n+1-6,

    ∴T n=(2n-3)2 n+1+6.