(1)由S n=2a n-2得:S n-1=2a n-1-2(n≥2),
两式相减得:a n=2a n-2a n-1,即
a n
a n-1 =2(n≥2),
又a 1=2a 1-2,
∴a 1=2,
∴数列{a n}是以2为首项,2为公比的等比数列,
∴a n=2 n.
∵点P(b n,b n+1)在直线x-y+2=0上,
∴b n+1-b n=2,
∴数列{b n}是等差数列,
∵b 1=1,
∴b n=2n-1;
(2)T n=1×2+3×2 2+5×2 3+…+(2n-3)×2 n-1+(2n-1)×2 n①
∴2T n=1×2 2+3×2 3+…+(2n-3)×2 n+(2n-1)×2 n+1②
①-②得:-T n=1×2+2(2 2+2 3+…+2 n)-(2n-1)×2 n+1
=2+2×
4(1- 2 n-1 )
1-2 -(2n-1)×2 n+1
=2+2×2 n+1-8-(2n-1)×2 n+1
=(3-2n)2 n+1-6,
∴T n=(2n-3)2 n+1+6.