设A(x1根号3,x1)
B(x2根号3,-x2)
x1x2根号3=8,3x1x2=8根号3
A B中点[(x1+x2)(根号3)/2,(x1-x2)/2]
[(x1+x2)(根号3)/2]^2=3(x1^2+x2^2+2x1x2)/4
[(x1-x2)/2]^2=(x1^2+x2^2-2x1x2)/4
所以[(x1+x2)(根号3)/2]^2-3[(x1-x2)/2]^2=(6x1x2+6x1x2)/4=3x1x2=8根号3
所以轨迹为x^2-3y^2=8根号3
设A(x1根号3,x1)
B(x2根号3,-x2)
x1x2根号3=8,3x1x2=8根号3
A B中点[(x1+x2)(根号3)/2,(x1-x2)/2]
[(x1+x2)(根号3)/2]^2=3(x1^2+x2^2+2x1x2)/4
[(x1-x2)/2]^2=(x1^2+x2^2-2x1x2)/4
所以[(x1+x2)(根号3)/2]^2-3[(x1-x2)/2]^2=(6x1x2+6x1x2)/4=3x1x2=8根号3
所以轨迹为x^2-3y^2=8根号3