正数列{An}An与2的等差中项等于Sn与2的等比中项.1.求{An}是等差数列.2.求An的通项公式.

1个回答

  • 1.

    (an + 2)/2=√(2Sn)

    an + 2=2√(2Sn)

    (an + 2)²=8Sn…………①

    ∴[a(n-1) + 2]²=8S(n-1)…………②

    ①-②,得

    (an + 2)²-[a(n-1) + 2]²=8Sn-8S(n-1)

    an² + 4an + 4 - a(n-1)² - 4a(n-1) - 4=8an

    an² - a(n-1)² -4an -4a(n-1)=0

    [an - a(n-1)]·[an + a(n-1)]-4[an + a(n-1)]=0

    [an - a(n-1) -4]·[an + a(n-1)]=0

    ∵an>0,∴an + a(n-1)≠0

    ∴an - a(n-1) -4=0,即an - a(n-1) = 4

    ∴数列{an}是等差数列.

    2.

    (a1+2)/2=√(2S1)=√(2a1)

    ∴a1=2

    ∴an=a1+(n-1)d=2+4(n-1)=4n-2

    3.

    Bn=1/2[(An+1/An)+(An/An+1)]

    =1/2[(4n+2)/(4n-2)+(4n-2)/(4n+2)]

    =1/2[(4n-2+4)/(4n-2) + (4n+2-4)/(4n+2)]

    =1/2[1 + 4/(4n-2) + 1 - 4/(4n+2)]

    =1/2[2 + 4/(4n-2) - 4/(4n+2)]

    =1 + 2/(4n-2) - 2/(4n+2)

    =1 + 1/(2n-1) - 1/(2n+1)

    ∴Sbn= [1 + (1- 1/3)] + [1+ (1/3 - 1/5)] + [ 1 + (1/5 - 1/7)]+ ……+[1 + 1/(2n-1) - 1/(2n+1)]

    = n + [1-1/3+1/3-1/5+1/5-1/7+……+1/(2n-1) - 1/(2n+1)]

    = n + [1 - 1/(2n+1)]

    =(2n²+3n)/(2n+1)