你的想法是对的,不用分情况,结论也是对的,但是g(a)的表达式有误,另外-2a^2+3也不是减函数.
∵f(x)=2x²-2ax+3=2(x-a/2)²-a²/2+3
∴g(a)=f(a/2)=-a²/2+3
∵g(a)在x∈[-1,1]取得
∴a/2∈[-1,1],a∈[-2,2]
所以g(a)max=g(0)=3
你的想法是对的,不用分情况,结论也是对的,但是g(a)的表达式有误,另外-2a^2+3也不是减函数.
∵f(x)=2x²-2ax+3=2(x-a/2)²-a²/2+3
∴g(a)=f(a/2)=-a²/2+3
∵g(a)在x∈[-1,1]取得
∴a/2∈[-1,1],a∈[-2,2]
所以g(a)max=g(0)=3