(a^2)(b-c)+(b^2)(c-a)+(c^2)(a-b)
=(b-c)a²+(b²c-b²a)+(c²a-bc²)
=(b-c)a²-(b²-c²)a+bc(b-c)
=(b-c)[a²-(b+c)a+bc]
=(b-c)(a-b)(a-c)
=0
所以a-b=0或b-c=0或a-c=0,得a=b或b=c或a=0
a,b,c三个数至少有两数相等
(a^2)(b-c)+(b^2)(c-a)+(c^2)(a-b)
=(b-c)a²+(b²c-b²a)+(c²a-bc²)
=(b-c)a²-(b²-c²)a+bc(b-c)
=(b-c)[a²-(b+c)a+bc]
=(b-c)(a-b)(a-c)
=0
所以a-b=0或b-c=0或a-c=0,得a=b或b=c或a=0
a,b,c三个数至少有两数相等