是求导过程,利用的是和差化积公式以及sinx和x是等价无穷小sin'x=lim(sin(x+h)-sinx)/h=2limcos(x+h/2)sin(h/2)/h=2limcos(x+h/2)*(h/2)/h=limcos(x+h/2)=cosxcos'x=lim[cos(x+h)-cosx]/h=-2limsin(x+h/2)sin(h/2)/h=...
详细微分一下sinx和cosx 用f(x+h)-f(x)/h h无限接近于0
1个回答
相关问题
-
f `(1)=-2,求lim h接近于0 f(1+2h)-f(1) / h 详细过程
-
f'(x)=-2,求limf(x+h)-f(x-h)/h(h趋向于0)
-
f(x)=x^2 求lim{f(x+h)-f(x)}/h h趋向于0
-
设f(x)=√x,求limf(x+h)-f(x)/h (h趋向于0)
-
f(x)=sinx,求f(1+h),[f(1+h)-f(1)]/h
-
f(x)=sinx,求f(1+h),[f(1+h)-f(1)]/h
-
f(x)=sinx,求{f(1+h)-f(1)}/h
-
证明lim( h→0)[f(x0 h) f(x0-h)-2f(x0)]/h2=f''(x0)
-
用定义求[f(x0+h)-f(x0-h)]/h的导数
-
f(x)在x处二阶可导,求lim{[f(x+h)-2f(x)+f(x-h)]/h^2},h趋向于0