根号(1+sin2x) dx 的不定积分怎么求呢?

2个回答

  • J = ∫ √(1+sin2x) dx

    = (1/2)∫ √(1+sint) dt,t=2x

    Let y = 1+sint then dy = costdt = √y√(2-y)dt

    J = ∫ √y * 1/[√y√(2-y)] dy

    = ∫ 1/√(2-y) dy

    = -∫ d(2-y)/√(2-y)

    = -√(2-y) + C

    = -√[2-(1+sin2x)] + C

    = -√(1-sin2x) + C

    ∫[π/6,π/3] (1+cotx)² dx

    = ∫[π/6,π/3] (1+2cotx+cot²x) dx

    = ∫[π/6,π/3] (1+2cotx) dx + ∫[π/6,π/3] (csc²x-1) dx

    = [2ln|sinx| - cotx] [π/6,π/3]

    = [2lnsin(π/3) - cot(π/3)] - [2lnsin(π/6) - cot(π/6)]

    = 2/√3 + ln(3)