解题思路:(1)根据两种货车可装的荔枝应大于等于30吨和可装的香蕉应大于等于13吨,列出不等式组进行求解;
(2)方法一:在所用的两种车的辆数一定时,所需货车的单价费用越低,所需的总费用越少;方法二:将每种方案的总费用算出,进行比较.
(1)设安排甲种货车x辆,则安排乙种货车(10-x)辆,
依题意得
4x+2(10−x)≥30
x+2(10−x)≥13
解这个不等式组得
x≥5
x≤7
∴5≤x≤7
∵x是整数
∴x可取5、6、7,即安排甲、乙两种货车有三种方案:
①甲种货车5辆,乙种货车5辆;
②甲种货车6辆,乙种货车4辆;
③甲种货车7辆,乙种货车3辆.
(2)方法一:由于甲种货车的运费高于乙种货车的运费,两种货车共10辆,
所以当甲种货车的数量越少时,总运费就越少,故该果农应
选择①运费最少,最少运费是16500元;
方法二:方案①需要运费:2000×5+1300×5=16500(元)
方案②需要运费:2000×6+1300×4=17200(元)
方案③需要运费:2000×7+1300×3=17900(元)
∴该果农应选择①运费最少,最少运费是16500元.
点评:
本题考点: 一元一次不等式组的应用.
考点点评: 本题主要考查不等式在现实生活中的应用,运用数学模型进行解题,使问题变得简单.注意本题的不等关系为:两种货车可装的荔枝应大于等于30吨和可装的香蕉应大于等于13吨.要会灵活运用函数的思想求得运费的最值问题.