用裂项法求和
n/(n+1)!=[(n+1)-1] /(n+1)!
=(n+1) /(n+1)!-1 /(n+1)!
=1/ n!-1 /(n+1)!.
1/2!+2/3!+3/4!+...+n/(n+1)!
=[1/1!-1 /2!]+[ 1/2!-1 /3!]+[ 1/3!-1 /4!]+...+[ 1/ n!-1 /(n+1)!]
=1-1 /(n+1)!,
用裂项法求和
n/(n+1)!=[(n+1)-1] /(n+1)!
=(n+1) /(n+1)!-1 /(n+1)!
=1/ n!-1 /(n+1)!.
1/2!+2/3!+3/4!+...+n/(n+1)!
=[1/1!-1 /2!]+[ 1/2!-1 /3!]+[ 1/3!-1 /4!]+...+[ 1/ n!-1 /(n+1)!]
=1-1 /(n+1)!,