n=1:(2*1+2)^1001=4^1001=3*2^1001=3
n=2:(2*2+2)^1001=6^1001=3*4^1001=3*3
n=3:(2*3+2)^1001=8^1001=3*6^1001=3*3*3
所以:2008^1001=3的1003次方
n=1:(2*1+2)^1001=4^1001=3*2^1001=3
n=2:(2*2+2)^1001=6^1001=3*4^1001=3*3
n=3:(2*3+2)^1001=8^1001=3*6^1001=3*3*3
所以:2008^1001=3的1003次方