由面积比等于边长比
(S1+ S5 + S6) / S1 = (S2 + S3 + S4) / S2 推出
S2S5 + S2S6 = S1S4 + S1S3
同理
S1S4 + S2S4 = S3S6 + S3S5
S4S6 + S3S6 = S2S5 + S1S5
三式左右相加消去相同项得
S1S3 + S3S5 + S1S5 = S2S4 + S4S6 + S2S6 等式1
又由西瓦定理知(S1/S2) *( S3/S4) * (S5/S6) = 1
推出 S1S3S5 = S2S4S6 等式2
等式1 除以 等式2 得出
1/S1 + 1/S3 + 1/S5 = 1/S2 + 1/S4 + 1/S6