1.∵X1,X2,…Xn都是正数,根据重要不等式
1+x1≥√x1
1+x2≥√x2
……
1+xn≥√xn
∴n个不等式左右相乘有(1+X1)(1+X2)…(1+Xn)≥ 2^n√x1√x2√xn
=2^n√x1x2……xn
=2^n (X1·X2·X3…·Xn=1)
命题得证
2.令c=a-b>0
原式=(c+b)^2+16/bc
=c^2+b^2+2bc+16/bc
根据重要不等式 当 c^2=b^2 且 2bc=16/bc
原式=2bc+2bc+16/bc
令2bc=2bc=16/bc
此时bc=2√2 ∵ c>0 b>0 ∴c^2=b^2=bc=2√2
此时原式最小值=2√2+2√2+4√2+ 4√2
=12√2