(1)
∵a/sinA=c/sinC 正弦定理
∴CsinA=asinC
已知:√3CsinA=acosC
∴√3asinC=acosC
tanC=sinC/cosC=√3/3
∴ C=30度
(2)
在△ABC中
∵C=30度
∴A+B=180-C=180-30=150
√3cosA+cosB
=√3cosA+cos(150-A)
=√3cosA+(cos150*cosA+sin150*sinA)
=√3cosA+(-√3/2*cosA+1/2*sinA)
=√3/2*cosA+1/2*sinA
=sin60*cosA+cos60*sinA
=sin(A+60)
当A+60=90时,有最大值1
∴A=30
∴A=C
所以为等腰三角形。