在△ABC中,∠ABC+∠ACB=180°-∠A
∵BO和CO分别是∠ABC和∠ACB的角平分线
∴∠1=1/2 ∠ABC,∠2=1/2 ∠ACB
∴∠1+∠2= 1/2(∠ABC+∠ACB)
∴∠1+∠2= 1/2 (180°-∠A)=90°- 1/2∠A
在△BOC中,∠BOC=180°-(∠1+∠2)
=180°-(90°- 1/2∠A)
=90°+ 1/2∠A
3、在△ABC中,∠ACD-∠ABC=∠A
∵OB,OC是∠ABC和∠ACD的平分线,
∠1= 1/2∠ACD,∠2= 1/2∠ABC,
在△BCO中,∠O=∠1-∠2,
= 1/2∠ACD- 1/2∠ABC,
= 1/2(∠ACD-∠ABC),
= 1/2∠A.
2、在△ABC中,∠CBD=∠A+∠ACB,∠BCE=∠A+∠ABC
∴∠CBD+∠BCE=∠A+∠ACB+∠A+∠ABC=180°+∠A
∵BO,CO分别是∠ABC与∠ACB的外角平分线
∴∠1= 1/2∠CBD,∠2=1/2 ∠BCE
∴∠1+∠2= 1/2(∠CBD+∠BCE)
= 1/2(180°+∠A)=90°+ 1/2∠A
在△BCO中∠BPC=180°-(∠1+∠2)
=180°-(90°+ 1/2∠A)=90°- 1/2∠A.