y=ax+b
x^2/m^2-y^2/n^2=1,设两根x1,x2
即求 -b/a 是否为定值,条件为OA,OB 斜率乘积是-1
-1=y1/x1 * y2/x2
x1x2+(ax1+b)(ax2+b)=0
(1+a^2)x1x2+ab(x1+x2)+b^2=0
...
(m^2-n^2) b^2 +a^2 m^2 n^2+m^2 n^2=0
-b/a不固定
y=ax+b
x^2/m^2-y^2/n^2=1,设两根x1,x2
即求 -b/a 是否为定值,条件为OA,OB 斜率乘积是-1
-1=y1/x1 * y2/x2
x1x2+(ax1+b)(ax2+b)=0
(1+a^2)x1x2+ab(x1+x2)+b^2=0
...
(m^2-n^2) b^2 +a^2 m^2 n^2+m^2 n^2=0
-b/a不固定