已知抛物线y=x2+ax+a-2(1)证明:此抛物线与x轴总有两个不同的交点;(2)求这两个交点间的距离
2个回答
1)根据韦达定理,△=a^2-4(a-2)=(a-2)^2+4>0 ,故抛物线与x轴有两个不同的交点.
2)实际上两个交点的距离就是Ix2-x1I=根号I△I
相关问题
3、已知抛物线y=x2+ax+a-2.(1)证明:此抛物线与x轴总有两个不同的交点; (2)求这两个交点间的距离(用关于
已知抛物线y=x2+ax+a-2 证明:此抛物线与x轴总有两个不同的交点
已知抛物线y=x2+ax+a-2(1)证明:此抛物线与x轴总有两个不同的交点
数学二次函数(在线等待回答)已知抛物线y=x2+ax+a(1)证明此抛物线与x轴总共有两个不同的交点,(2)求这两个交点
已知抛物线Y=X2+(2K+1)X-K2+K 求证:此抛物线与X轴总有两个不同的交点 此抛物线上
已知抛物线y=x2+ax+a-2 求抛物线与x轴两个交点间的距离(用关于a的表达式表示)
已知抛物线y=-x的平方+mx+m+4,1 求证此抛物线与轴总有两个交点 2 试用m来表达这两个交点距离
已知抛物线y=x^2+kx-四分之三K^2(1)证明:此抛物线与x轴总有两个交 点
已知抛物线y=x的平方+kx+k-1.(-1<k<1)(1)证明该抛物线与x轴总有两个交点,(2)指出该抛物线与x轴交点
已知抛物线y=mx?撸╩-3)x-1,证明抛物线与x轴总有两个交点