f(x)=-2acos²x-2√2asinx+3a+b
=-2a(1-sin²x) -2√2asinx+3a+b
=2asin²x-2√2asinx+a+b
=2a(sin²x-√2sinx) +a+b
=2a(sinx-√2/2)² + b (x∈[0,π/2])
(1)a>0时,显然,当sinx=√2/2时,即x=π/4时,f(x)有最小值f(π/4)=b=-5
当sinx=0时,即x=0时,f(x)有最大值f(0)=a+b=1,解得a=6
(2)当a0时,a=6,b=-5;
(2)a
f(x)=-2acos²x-2√2asinx+3a+b
=-2a(1-sin²x) -2√2asinx+3a+b
=2asin²x-2√2asinx+a+b
=2a(sin²x-√2sinx) +a+b
=2a(sinx-√2/2)² + b (x∈[0,π/2])
(1)a>0时,显然,当sinx=√2/2时,即x=π/4时,f(x)有最小值f(π/4)=b=-5
当sinx=0时,即x=0时,f(x)有最大值f(0)=a+b=1,解得a=6
(2)当a0时,a=6,b=-5;
(2)a