方程sinx+cosx+sinx*cosx-p=0有解,求p范围
就求函数y=sinx+cosx+sinxcosx的值域
令t=sinx+cosx
∴ t²=1+2sinxcosx=1+sin2x∈[0,2]
则t∈[-√2,√2]
∴ y=t+(t²-1)/2
=(t²+2t-1)/2
=[(t+1)²-2]/2
∴ t=√2时,y有最大值为√2+1/2
t=-√2时,y有最小值为-√2+1/2
∴ p的取值范围是[-√2+1/2,√2+1/2]
方程sinx+cosx+sinx*cosx-p=0有解,求p范围
就求函数y=sinx+cosx+sinxcosx的值域
令t=sinx+cosx
∴ t²=1+2sinxcosx=1+sin2x∈[0,2]
则t∈[-√2,√2]
∴ y=t+(t²-1)/2
=(t²+2t-1)/2
=[(t+1)²-2]/2
∴ t=√2时,y有最大值为√2+1/2
t=-√2时,y有最小值为-√2+1/2
∴ p的取值范围是[-√2+1/2,√2+1/2]