(1)证明:S n+a n=n+3①;S n-1+a n-1=n+2 ②
①式与②式相减,得 2a n-a n-1=1,经过变形,得
a n -1
a n-1 -1 =
1
2 ,
显然存在常数c=-1,使得数列{a n-1}是等比数列,且公比q=
1
2
(2)当n=1,有s 1+a 1=2a 1=1+3,可得a 1=2,
由{a n-1}是等比数列,公比q=0.5,当n>1时,可知a n-1=(a 1-1)q n-1化简,得a n=0.5 n-1+1
s n=n+3-an=n+2-q^(n-1)=n+2-0.5 n-1
(3)证明:T n+1=S n+1-(n+1)×a n+1=s n-na n+1由T n=S n-na n,两式相减,得T n+1-T n=n[a n-a n+1]③
由于n为N正,n>0,当n=1时,a n=2,a n+1=1,a n-a n+1>0,故③式右边大于0,故T n+1>T n.
当n>1时,由前面得a n-a n+1=0.5a n>0,故③式右边大于0,故T n+1>T n.
得证