f(x)=cos2x-cosx+1
=2cos²x-1-cosx+1
=2cos²x-cosx
看成二次函数,其对称轴=1/4
cosπ/3=1/2
cos5π/6=-√3/2
所以cosx能取到对称轴
f(x)min=2*1/16-1/4=-1/8
f(x)max=2*(-√3/2)^2+√3/2=(3+√3)/2
值域[-1/8,(3+√3)/2]
f(x)=cos2x-cosx+1
=2cos²x-1-cosx+1
=2cos²x-cosx
看成二次函数,其对称轴=1/4
cosπ/3=1/2
cos5π/6=-√3/2
所以cosx能取到对称轴
f(x)min=2*1/16-1/4=-1/8
f(x)max=2*(-√3/2)^2+√3/2=(3+√3)/2
值域[-1/8,(3+√3)/2]