证明:
根据不等到式:a^3+b^3+c^3≥3abc,(a>0,b>0,c>0).
则有:(a²+b²+c²)≥3*(abc)^(2/3),
1/(sinA)²+1/(sinB)²+1/(sinC)²
=4R^2/a^2+4R^2/b^2+4R^2/c^2
≥3*(4R^2)*[1/(abc)^(2/3)],
(a²+b²+c²)(1/(sinA)²+1/(sinB)²+1/(sinC)²)
≥[3*(abc)^(2/3)]*{3*(4R^2)*[1/(abc)^(2/3)]}=9*4R^2=36R^2.
即,(a²+b²+c²)(1/(sinA)²+1/(sinB)²+1/(sinC)²)>=36R²,成立.