证明:
∵AE是∠BAC的平分线
∴∠BAE = ∠CAE
∵AD垂直于BC
∴∠DAC + ∠C = 90度,∠DAB + ∠B = 90度 .(1)
∵∠DAC = ∠CAE + ∠DAE
∠DAB = ∠BAE - ∠DAE
代入(1)
∠CAE + ∠DAE + ∠C = 90度 .(2)
∠BAE - ∠DAE + ∠B = 90度 .(3)
(2) - (3)得
(∠CAE + ∠DAE+ ∠C) - (∠BAE - ∠DAE+ ∠B)=0
而 ∠BAE = ∠CAE,化简得
∠DAE=1/2(∠B-∠C) .