Sn=1/2+1/6+1/12+…+1/n(n+1)
=1/(1*2)+1/(2*3)+...+1/(n)*(n+1)
=1-1/2+1/2-1/3+...+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)
所以
Sn+1=1-1/(n+2)=(n+1)/(n+2)
sn*sn+1=3/4
n/(n+1)*(n+1)/(n+2)=3/4
n/(n+2)=3/4
4n=3n+6
n=6
Sn=1/2+1/6+1/12+…+1/n(n+1)
=1/(1*2)+1/(2*3)+...+1/(n)*(n+1)
=1-1/2+1/2-1/3+...+1/n-1/(n+1)
=1-1/(n+1)
=n/(n+1)
所以
Sn+1=1-1/(n+2)=(n+1)/(n+2)
sn*sn+1=3/4
n/(n+1)*(n+1)/(n+2)=3/4
n/(n+2)=3/4
4n=3n+6
n=6