解题思路:如解答图所示,构造含有90°圆心角的⊙P,则⊙P与y轴的交点即为所求的点C.
注意点C有两个.
设线段BA的中点为E,
∵点A(4,0)、B(-6,0),∴AB=10,E(-1,0).
(1)如答图1所示,过点E在第二象限作EP⊥BA,且EP=[1/2]AB=5,则易知△PBA为等腰直角三角形,∠BPA=90°,PA=PB=5
2;
以点P为圆心,PA(或PB)长为半径作⊙P,与y轴的正半轴交于点C,
∵∠BCA为⊙P的圆周角,
∴∠BCA=[1/2]∠BPA=45°,即则点C即为所求.
过点P作PF⊥y轴于点F,则OF=PE=5,PF=1,
在Rt△PFC中,PF=1,PC=5
2,由勾股定理得:CF=
PC2−PF2=7,
∴OC=OF+CF=5+7=12,
∴点C坐标为(0,12);
(2)如答图2所示,在第3象限可以参照(1)作同样操作,同理求得y轴负半轴上的点C坐标为(0,-12).
综上所述,点C坐标为(0,12)或(0,-12).
故答案为:(0,12)或(0,-12).
点评:
本题考点: 圆周角定理;坐标与图形性质;勾股定理.
考点点评: 本题难度较大.由45°的圆周角联想到90°的圆心角是解题的突破口,也是本题的难点所在.