y=1/2cos²x+√3/2sinxcosx+1
=(1+cos2x)/4+√3/4sin2x+1
=1/4cos2x+√3/4sin2x +5/4
=1/2sin(2x+π/6)+5/4
(1)所以函数的周期T=2π/2=π
(2)因为x∈[0,π/2]
所以2x+π/6∈[π/6,7π/6]
所以sin(2x+π/6)∈[-1/2,1]
所以y∈[1,7/4]
所以函数的最大值为7/4,最小值为1
由-π/2+2kπ
y=1/2cos²x+√3/2sinxcosx+1
=(1+cos2x)/4+√3/4sin2x+1
=1/4cos2x+√3/4sin2x +5/4
=1/2sin(2x+π/6)+5/4
(1)所以函数的周期T=2π/2=π
(2)因为x∈[0,π/2]
所以2x+π/6∈[π/6,7π/6]
所以sin(2x+π/6)∈[-1/2,1]
所以y∈[1,7/4]
所以函数的最大值为7/4,最小值为1
由-π/2+2kπ