(1)利用互余关系找角相等,证明△BEF∽△CDE,根据对应边的比相等求函数关系式;
(2)把m的值代入函数关系式,再求二次函数的最大值;
(3)∵∠DEF=90°,只有当DE=EF时,△DEF为等腰三角形,把条件代入即可.(1)∵EF⊥DE,
∴∠BEF=90°-∠CED=∠CDE,
又∠B=∠C=90°,
∴△BEF∽△CDE,
∴ 即y/x=8-x/m 解得y= 8x-x2/m;
(2)m=8时,y=- x2+x,当x=4 时,y的值最大为2 ;
(3)∵∠DEF=90°,只有当DE=EF时,△DEF为等腰三角形,
此时m=8-x,解方程 得x=6或2,
故m=2或6.