[(a^2)+(b^2)+1]-[ab+a+b]
=[(a-1)^2+(b-1)^2+(a-b)^2]/2
因为:a,b,1这三个数中至少有2个不相等
所以,
[(a^2)+(b^2)+1]-[ab+a+b]
=[(a-1)^2+(b-1)^2+(a-b)^2]/2
>0
[(a^2)+(b^2)+1]>[ab+a+b]
[(a^2)+(b^2)+1]-[ab+a+b]
=[(a-1)^2+(b-1)^2+(a-b)^2]/2
因为:a,b,1这三个数中至少有2个不相等
所以,
[(a^2)+(b^2)+1]-[ab+a+b]
=[(a-1)^2+(b-1)^2+(a-b)^2]/2
>0
[(a^2)+(b^2)+1]>[ab+a+b]