2×(sinα)^2-sinαcosα+(cosα)^2=(2×(sinα)^2-sinαcosα+(cosα)^2)/((sinα)^2+(cosα)^2),
再上下同时除以(cosα)^2,可得2×(sinα)^2-sinαcosα+(cosα)^2=(2×(tanα)^2-tanα+1)/(1+(tanα)^2);带入tanα=根号下2,得
2×(sinα)^2-sinαcosα+(cosα)^2=(5-根号下2)/3
2×(sinα)^2-sinαcosα+(cosα)^2=(2×(sinα)^2-sinαcosα+(cosα)^2)/((sinα)^2+(cosα)^2),
再上下同时除以(cosα)^2,可得2×(sinα)^2-sinαcosα+(cosα)^2=(2×(tanα)^2-tanα+1)/(1+(tanα)^2);带入tanα=根号下2,得
2×(sinα)^2-sinαcosα+(cosα)^2=(5-根号下2)/3