SinA+sinB+sinC
=2sin(A+B)/2cos(A-B)/2+2sin(C/2)cos(C/2)
=2cos(C/2)cos(A-B)/2+2cos(A+B)/2cos(C/2)
=2cos(C/2)[cos(A-B)/2+cos(A+B)/2]
=2cos(C/2)cos(A/2)cos(B/2)
得证
tanC=-tan(A+B)=-(tanA+tanB)/(1-tanAtanB)
去分母
tanC-tanAtanBtanC=-tanA-tanB
所以tanAtanBtanC=tanA+tanB+tanC
得证